

Theta Burst Stimulation for Hemiplegic Upper Extremity After Stroke: A Metaanalytic Review

Jack Jiaqi Zhang¹, Youxin Sui¹, Zhongfei Bai², Kenneth NK Fong¹,

¹Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China ²Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China Corresponding author: Jack Jiaqi Zhang, Research Assistant Professor, Department of Rehabilitation Sciences Email: jack-jiaqi.zhang@polyu.edu.hk

Watenabe et al., 2018 excitatory

Zhang et al;., 2022b excitatory

Zhang et al., 2022a

Khan et al., 2019

Heterogeneity: I²=76.15%

Test for overall effect: Z=2.923. P=0.003

0.199

0.004

0.000

Improved upper extremity impairment (measured by FMA-UE) was found after TBS

intervention compared to the sham stimulation (Hedge's g = 0.646, p = 0.003, $I^2 = 76.15\%$)

0.703

1.163

0.646

superior efficacy compared to

conventional 600-pulse protocols.

Introduction

- Theta burst stimulation (TBS) is a patterned form of repetitive transcranial magnetic stimulation (rTMS).
- In clinical trials, TBS is now frequently used for stimulation-based brain priming before rehabilitation intervention to improve the readiness of the brain to re-learn motor skills during behavioral motor practice, thereby facilitating therapeutic benefits from upper extremity rehabilitation training for patients after stroke.

- 1) To evaluate the effects of different TBS protocols on **improving upper extremity motor impairment and functional activities** in patients with stroke using meta-analyses.
- 2) To identify any significant associations between various TBS parameters, patient demographics, clinical profiles, and effect sizes using subgroup analyses and meta-regression.

Methods

• A literature search was conducted for studies published between January 1, 2000, to August 29, 2023, which were indexed in four databases: PubMed, EMBASE, Web of Science, and Medline.

We followed the PICOS framework for the inclusion of studies:

- Population (P): Studies that included adult participants diagnosed with stroke.
- Intervention (I): Interventions that used TBS applied to the primary motor cortex (M1) cortical representations of the proximal or distal upper extremity.
- Comparison (C): Sham TBS or no stimulation control.
- Outcomes (O): Studies that provided at least one outcome assessing upper limb motor impairment, functional activity, or neural functions (neurophysiological or neuroimaging outcomes).
- Study design (S): Randomized or pseudorandomized controlled trials with either a parallel or crossover design.
- Meta-analysis: Hedges' g and 95% confidence interval (CI) were computed for all meta-analyses.
- <u>Meta-regression</u>: Univariate meta-regression was performed with various patients' demographics, clinical information, as well as TBS parameters.

Results

Conclusion

TBS is an efficacious brain stimulation therapy that enhances the therapeutic benefits of poststroke upper extremity rehabilitation training. Stroke patients with a preserved cortex show better responsiveness to TBS. TBS protocols using a higher dose may have superior efficacy.